forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc_support_code_mdlstm.cpp
676 lines (591 loc) · 23 KB
/
c_support_code_mdlstm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
#include <thrust/device_vector.h>
#define DIM_GRID 64
#define DIM_BLOCK 512
static const char *_cudaGetErrorEnum(cublasStatus_t error)
{
switch (error)
{
case CUBLAS_STATUS_SUCCESS:
return "CUBLAS_STATUS_SUCCESS";
case CUBLAS_STATUS_NOT_INITIALIZED:
return "CUBLAS_STATUS_NOT_INITIALIZED";
case CUBLAS_STATUS_ALLOC_FAILED:
return "CUBLAS_STATUS_ALLOC_FAILED";
case CUBLAS_STATUS_INVALID_VALUE:
return "CUBLAS_STATUS_INVALID_VALUE";
case CUBLAS_STATUS_ARCH_MISMATCH:
return "CUBLAS_STATUS_ARCH_MISMATCH";
case CUBLAS_STATUS_MAPPING_ERROR:
return "CUBLAS_STATUS_MAPPING_ERROR";
case CUBLAS_STATUS_EXECUTION_FAILED:
return "CUBLAS_STATUS_EXECUTION_FAILED";
case CUBLAS_STATUS_INTERNAL_ERROR:
return "CUBLAS_STATUS_INTERNAL_ERROR";
}
return "<unknown>";
}
static void HandleError(cudaError_t err, const char *file, int line)
{
if (err != cudaSuccess)
{
printf("%s in %s at line %d\n", cudaGetErrorString(err),
file, line);
exit(EXIT_FAILURE);
}
}
static void HandleError(cublasStatus_t status, const char *file, int line)
{
if (status != CUBLAS_STATUS_SUCCESS)
{
printf("%s in %s at line %d\n", _cudaGetErrorEnum(status),
file, line);
exit(EXIT_FAILURE);
}
}
#define HANDLE_ERROR( err ) (HandleError( err, __FILE__, __LINE__ ))
CudaNdarray * sumOverAllButLastDimensions(const CudaNdarray * A)
{
int lastDim = CudaNdarray_HOST_DIMS(A)[A->nd - 1];
int N = CudaNdarray_SIZE(A) / lastDim;
thrust::device_vector<float> v(N, 1.0f);
float alpha = 1.0f;
float beta = 0.0f;
const float * dataA = CudaNdarray_DEV_DATA(A);
const float * dataX = thrust::raw_pointer_cast(&v[0]);
int dims[] = { lastDim };
CudaNdarray * dst = (CudaNdarray*)CudaNdarray_NewDims(1, dims);
float * dataDst = CudaNdarray_DEV_DATA(dst);
int lda = lastDim;
HANDLE_ERROR(cublasSgemv(handle, CUBLAS_OP_N, lastDim, N, &alpha, dataA, lda, dataX, 1, &beta, dataDst, 1));
return dst;
}
CudaNdarray * CudaNdarray_zeros_like(CudaNdarray* a)
{
const int * dim = CudaNdarray_HOST_DIMS(a);
CudaNdarray * res = (CudaNdarray*) CudaNdarray_NewDims(a->nd, dim);
int n = CudaNdarray_SIZE(a);
HANDLE_ERROR(cudaMemset(CudaNdarray_DEV_DATA(res), 0, sizeof(float) * n));
return res;
}
CudaNdarray * CudaNdarray_uninitialized_like(CudaNdarray* a)
{
const int * dim = CudaNdarray_HOST_DIMS(a);
CudaNdarray * res = (CudaNdarray*)CudaNdarray_NewDims(a->nd, dim);
return res;
}
//if nd is 2 then assume a weight matrix and just return beginning of data
//else nd should be 3 and we pick the x part
const float * data_ptr(const CudaNdarray * a, int y, int x)
{
assert(a->nd == 2 || a->nd == 3);
if (a->nd == 2)
{
return CudaNdarray_DEV_DATA(a);
}
else
{
const int * dims = CudaNdarray_HOST_DIMS(a);
return CudaNdarray_DEV_DATA(a) + x * dims[1] * dims[2];
}
}
float * data_ptr(CudaNdarray * a, int y, int x)
{
const CudaNdarray * ca = a;
return const_cast<float *>(data_ptr(ca, y, x));
}
void lastTwoDims(const CudaNdarray * a, int out[2])
{
const int * dims = CudaNdarray_HOST_DIMS(a);
assert(a->nd >= 2);
out[0] = dims[a->nd - 2];
out[1] = dims[a->nd - 1];
}
int lastTwoDimsStride(const CudaNdarray * a)
{
int dims[2];
lastTwoDims(a, dims);
return dims[0] * dims[1];
}
__global__ void tanh_kernel(float * dst, int len)
{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
while (idx < len)
{
dst[idx] = tanhf(dst[idx]);
idx += gridDim.x * blockDim.x;
}
}
__global__ void add_kernel(float * dst, const float * src, int len)
{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
while (idx < len)
{
dst[idx] += src[idx];
idx += gridDim.x * blockDim.x;
}
}
__global__ void lstm_kernel(float * data, const float * old_state, bool old_state_strided,
float * output, float * state_out, int n_cells, int n_batch, const float * i)
{
//layout:
//data[0*n_cells..1*n_cells-1] : input gate
//data[1*n_cells..2*n_cells-1] : forget gate
//data[2*n_cells..3*n_cells-1] : output gate
//data[3*n_cells..4*n_cells-1] : cell state
//output[0*n_cells..1*n_cells-1]: cell output
//repeated for every mini-batch
int idx = threadIdx.x + blockDim.x * blockIdx.x;
while (idx < n_cells * n_batch)
{
int batch_idx = idx / n_cells;
int start = batch_idx * 4 * n_cells + idx % n_cells;
float i_batch = i[batch_idx];
//input, forget and output gates
float inpGate = 1.f / (1.f + expf(-data[start]));
float fgtGate = 1.f / (1.f + expf(-data[start + n_cells]));
float outGate = 1.f / (1.f + expf(-data[start + 2 * n_cells]));
float state = inpGate * tanhf(data[start + 3 * n_cells]);
float old_state_batch = old_state_strided ? old_state[start] : old_state[idx];
state += fgtGate * old_state_batch;
state = state * i_batch + old_state_batch * (1.f - i_batch);
//cell output
output[idx] = outGate * tanhf(state) * i_batch;
data[start] = inpGate;
data[start + n_cells] = fgtGate;
data[start + 2 * n_cells] = outGate;
data[start + 3 * n_cells] = state;
if(state_out)
{
state_out[idx] = state;
}
idx += gridDim.x * blockDim.x;
}
}
__global__ void lstms_kernel(float * data, const float * old_state, bool old_state_strided,
float * output, float * state_out, int n_cells, int n_batch, const float * i, const float * att)
{
//layout:
//data[0*n_cells..1*n_cells-1] : input gate
//data[1*n_cells..2*n_cells-1] : forget gate
//data[2*n_cells..3*n_cells-1] : output gate
//data[3*n_cells..4*n_cells-1] : cell state
//output[0*n_cells..1*n_cells-1]: cell output
//repeated for every mini-batch
int idx = threadIdx.x + blockDim.x * blockIdx.x;
while (idx < n_cells * n_batch)
{
int batch_idx = idx / n_cells;
int start = batch_idx * 4 * n_cells + idx % n_cells;
float i_batch = i[batch_idx];
float att_batch = att[batch_idx];
//input, forget and output gates
float inpGate = 1.f / (1.f + expf(-data[start]));
float fgtGate = (1.f / (1.f + expf(-data[start + n_cells])))*(1.f - att_batch);
//printf("%d \n",fgtGate);
float outGate = 1.f / (1.f + expf(-data[start + 2 * n_cells]));
float state = inpGate * tanhf(data[start + 3 * n_cells]);
float old_state_batch = old_state_strided ? old_state[start] : old_state[idx];
state += fgtGate * old_state_batch;
state = state * i_batch + old_state_batch * (1.f - i_batch);
//cell output
output[idx] = outGate * tanhf(state) * i_batch;
data[start] = inpGate;
data[start + n_cells] = fgtGate;
data[start + 2 * n_cells] = outGate;
data[start + 3 * n_cells] = state;
if(state_out)
{
state_out[idx] = state;
}
idx += gridDim.x * blockDim.x;
}
}
__global__ void lstm_bwd_kernel(float * delta, float * epsilon, const float * next_epsilon, const float * old_state,
bool old_state_strided, const float * Y, int n_cells, int n_batch, const float * i)
{
//layout:
//delta[0*n_cells..1*n_cells-1] : input gate
//delta[1*n_cells..2*n_cells-1] : forget gate
//delta[2*n_cells..3*n_cells-1] : output gate
//delta[3*n_cells..4*n_cells-1] : cell state
//epsilon[0*n_cells..1*n_cells-1]: cell output derivative (later overwritten, see below)
//next_epsilon[0*n_cells..1*n_cells-1]: cell state derivative * forget_gate (of next timestep)
//repeated for every mini-batch
int idx = threadIdx.x + blockDim.x * blockIdx.x;
while (idx < n_cells * n_batch)
{
int batch_idx = idx / n_cells;
int batch_offset = batch_idx * 4 * n_cells;
int cell_offset = idx % n_cells;
int start = batch_offset + cell_offset;
float i_batch = i[batch_idx];
float inpGate = delta[start];
float fgtGate = delta[start + n_cells];
float outGate = delta[start + 2 * n_cells];
float oldState = old_state_strided ? old_state[start] : old_state[idx];
float state = delta[start + 3 * n_cells];
float eps = epsilon[idx];
//avoid division by 0 (TODO: check if this is needed)
float gc = 0.f; //g(c(t))
float gzc = 0.f; //g(z_c(t))
if (outGate != 0)
{
gc = Y[idx] / outGate;
}
if (inpGate != 0)
{
gzc = (state - fgtGate * oldState) / inpGate;
}
//delta_output
delta[start + 2 * n_cells] = outGate * (1.f - outGate) * gc * eps * i_batch;
//epsilon_c
float epsilon_c = (1.f - (gc * gc)) * outGate * eps;
epsilon_c += next_epsilon[idx];
epsilon[idx] = epsilon_c * fgtGate * i_batch + next_epsilon[idx] * (1.f - i_batch);
//delta_cell
delta[start + 3 * n_cells] = inpGate * (1.f - (gzc * gzc)) * epsilon_c * i_batch;
//delta_forget
delta[start + n_cells] = fgtGate * (1.f - fgtGate) * oldState * epsilon_c * i_batch;
//delta_input
delta[start] = inpGate * (1.f - inpGate) * gzc * epsilon_c * i_batch;
idx += gridDim.x * blockDim.x;
}
}
__global__ void blstm_kernel(float *data_f, float *data_b, const float * old_state_f, const float * old_state_b,
bool old_state_strided, float * output_f, float *output_b, float * state_out_f, float *state_out_b,
int n_cells, int n_batch, const float * i_f, const float * i_b)
{
//layout:
//data[0*n_cells..1*n_cells-1] : input gate
//data[1*n_cells..2*n_cells-1] : forget gate
//data[2*n_cells..3*n_cells-1] : output gate
//data[3*n_cells..4*n_cells-1] : cell state
//output[0*n_cells..1*n_cells-1]: cell output
//repeated for every mini-batch
int idx = threadIdx.x + blockDim.x * blockIdx.x;
while (idx < n_cells * n_batch * 2)
{
float *data = data_f;
const float *old_state = old_state_f;
float *output = output_f;
float *state_out = state_out_f;
const float *i = i_f;
int ids = idx;
if (idx >= n_cells * n_batch)
{
data = data_b;
old_state = old_state_b;
output = output_b;
state_out = state_out_b;
i = i_b;
ids -= n_cells * n_batch;
}
int batch_idx = ids / n_cells;
int start = batch_idx * 4 * n_cells + ids % n_cells;
float i_batch = i[batch_idx];
//input, forget and output gates
float inpGate = 1.f / (1.f + expf(-data[start]));
float fgtGate = 1.f / (1.f + expf(-data[start + n_cells]));
float outGate = 1.f / (1.f + expf(-data[start + 2 * n_cells]));
float state = inpGate * tanhf(data[start + 3 * n_cells]);
float old_state_batch = old_state_strided ? old_state[start] : old_state[ids];
state += fgtGate * old_state_batch;
state = state * i_batch + old_state_batch * (1.f - i_batch);
//cell output
output[ids] = outGate * tanhf(state) * i_batch;
data[start] = inpGate;
data[start + n_cells] = fgtGate;
data[start + 2 * n_cells] = outGate;
data[start + 3 * n_cells] = state;
if(state_out)
{
state_out[ids] = state;
}
idx += gridDim.x * blockDim.x;
}
}
__global__ void blstm_bwd_kernel(float * delta_f, float *delta_b, float * epsilon_f, float *epsilon_b, const float * next_epsilon_f, const float *next_epsilon_b,
const float * old_state_f, const float * old_state_b,
bool old_state_strided, const float * Y_f, const float * Y_b, int n_cells, int n_batch, const float * i_f, const float * i_b)
{
//layout:
//delta[0*n_cells..1*n_cells-1] : input gate
//delta[1*n_cells..2*n_cells-1] : forget gate
//delta[2*n_cells..3*n_cells-1] : output gate
//delta[3*n_cells..4*n_cells-1] : cell state
//epsilon[0*n_cells..1*n_cells-1]: cell output derivative (later overwritten, see below)
//next_epsilon[0*n_cells..1*n_cells-1]: cell state derivative * forget_gate (of next timestep)
//repeated for every mini-batch
int idx = threadIdx.x + blockDim.x * blockIdx.x;
while (idx < n_cells * n_batch * 2)
{
float *delta = delta_f;
float *epsilon = epsilon_f;
const float *next_epsilon = next_epsilon_f;
const float *old_state = old_state_f;
const float *Y = Y_f;
const float *i = i_f;
int ids = idx;
if (idx >= n_cells * n_batch)
{
delta = delta_b;
epsilon = epsilon_b;
next_epsilon = next_epsilon_b;
old_state = old_state_b;
Y = Y_b;
i = i_b;
ids -= n_cells * n_batch;
}
int batch_idx = ids / n_cells;
int batch_offset = batch_idx * 4 * n_cells;
int cell_offset = ids % n_cells;
int start = batch_offset + cell_offset;
float i_batch = i[batch_idx];
float inpGate = delta[start];
float fgtGate = delta[start + n_cells];
float outGate = delta[start + 2 * n_cells];
float oldState = old_state_strided ? old_state[start] : old_state[ids];
float state = delta[start + 3 * n_cells];
float eps = epsilon[ids];
//avoid division by 0 (TODO: check if this is needed)
float gc = 0.f; //g(c(t))
float gzc = 0.f; //g(z_c(t))
if (outGate != 0)
{
gc = Y[ids] / outGate;
}
if (inpGate != 0)
{
gzc = (state - fgtGate * oldState) / inpGate;
}
//delta_output
delta[start + 2 * n_cells] = outGate * (1.f - outGate) * gc * eps * i_batch;
//epsilon_c
float epsilon_c = (1.f - (gc * gc)) * outGate * eps;
epsilon_c += next_epsilon[ids];
epsilon[ids] = epsilon_c * fgtGate * i_batch + next_epsilon[ids] * (1.f - i_batch);
//delta_cell
delta[start + 3 * n_cells] = inpGate * (1.f - (gzc * gzc)) * epsilon_c * i_batch;
//delta_forget
delta[start + n_cells] = fgtGate * (1.f - fgtGate) * oldState * epsilon_c * i_batch;
//delta_input
delta[start] = inpGate * (1.f - inpGate) * gzc * epsilon_c * i_batch;
idx += gridDim.x * blockDim.x;
}
}
//input is already tanh
__global__ void mul_with_tanh_deriv_kernel(float * dst, const float * tanhVals, int len)
{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
while (idx < len)
{
//tanh' = 1 - tanh^2
dst[idx] *= 1.0f - tanhVals[idx] * tanhVals[idx];
idx += gridDim.x * blockDim.x;
}
}
void do_tanh(CudaNdarray * a, int y, int x)
{
float * data_a = data_ptr(a, y, x);
int size = lastTwoDimsStride(a);
//TODO tune launch configuration
tanh_kernel<<<DIM_GRID, DIM_BLOCK>>>(data_a, size);
}
void do_add(float * dst, const float * src, int len)
{
add_kernel<<<DIM_GRID, DIM_BLOCK>>>(dst, src, len);
}
void do_lstm(CudaNdarray * H, CudaNdarray * out, const CudaNdarray * prev, float * state_out, int y, int x, const CudaNdarray * i)
{
assert(y == 0 && "2d LSTM not supported yet");
int dims[2];
lastTwoDims(H, dims);
assert(dims[1] % 4 == 0); //3 gates + cell
int n_cells = dims[1] / 4;
int n_batch = dims[0];
float * data_H = data_ptr(H, y, x);
const float * data_prev = CudaNdarray_DEV_DATA(prev);
const float * data_old_state = x > 0 ? data_ptr(H, y, x - 1) + 3 * n_cells : data_prev;
float * data_out = data_ptr(out, y, x);
const float * data_i = CudaNdarray_DEV_DATA(i) + x * n_batch;
//TODO tune launch configuration
lstm_kernel<<<DIM_GRID, DIM_BLOCK>>>(data_H, data_old_state, x > 0, data_out, state_out, n_cells, n_batch, data_i);
}
void do_lstms(CudaNdarray * H, CudaNdarray * out, const CudaNdarray * prev, float * state_out, int y, int x, const CudaNdarray * i, const CudaNdarray * att)
{
assert(y == 0 && "2d LSTM not supported yet");
int dims[2], dims_att[2];
lastTwoDims(H, dims);
assert(dims[1] % 4 == 0); //3 gates + cell
int n_cells = dims[1] / 4;
int n_batch = dims[0];
float * data_H = data_ptr(H, y, x);
const float * data_prev = CudaNdarray_DEV_DATA(prev);
const float * data_old_state = x > 0 ? data_ptr(H, y, x - 1) + 3 * n_cells : data_prev;
float * data_out = data_ptr(out, y, x);
const float * data_i = CudaNdarray_DEV_DATA(i) + x * n_batch;
const float * data_att = CudaNdarray_DEV_DATA(att) + x * n_batch;
//TODO tune launch configuration
lstms_kernel<<<DIM_GRID, DIM_BLOCK>>>(data_H, data_old_state, x > 0, data_out, state_out, n_cells, n_batch, data_i, data_att);
}
//epsilon are the derivates w.r.t. Z, delta stores the gate and cell activations and will store the derivatives later
//Dd stores the derivative w.r.t. end state
void do_lstm_bwd(CudaNdarray * delta, CudaNdarray * epsilon, const CudaNdarray * Y, const CudaNdarray * Dd,
const CudaNdarray * c, int y, int x, bool rightBorder, const CudaNdarray * i)
{
assert(y == 0 && "2d LSTM not supported yet");
int dims[2];
lastTwoDims(delta, dims);
assert(dims[1] % 4 == 0); //3 gates + cell
int n_cells = dims[1] / 4;
int n_batch = dims[0];
float * data_delta = data_ptr(delta, y, x);
float * data_epsilon = data_ptr(epsilon, y, x);
const float * data_next_epsilon = rightBorder ? CudaNdarray_DEV_DATA(Dd) : data_ptr(epsilon, y, x + 1);
const float * data_old_state = x > 0 ? data_ptr(delta, y, x - 1) + 3 * n_cells : CudaNdarray_DEV_DATA(c);
const float * data_Y = data_ptr(Y, y, x);
const float * data_i = CudaNdarray_DEV_DATA(i) + x * n_batch;
//TODO tune launch configuration
lstm_bwd_kernel<<<DIM_GRID, DIM_BLOCK>>>(data_delta, data_epsilon, data_next_epsilon,
data_old_state, x > 0, data_Y, n_cells, n_batch, data_i);
}
void do_blstm(CudaNdarray * H_f, CudaNdarray * H_b, CudaNdarray * out_f, CudaNdarray * out_b,
const CudaNdarray * prev_f, const CudaNdarray * prev_b, float * state_out_f, float * state_out_b,
int y, int x, const CudaNdarray * i_f, const CudaNdarray * i_b)
{
assert(y == 0 && "2d LSTM not supported yet");
int dims[2];
lastTwoDims(H_f, dims);
assert(dims[1] % 8 == 0); //3 gates + cell
int n_cells = dims[1] / 4;
int n_batch = dims[0];
float * data_H_f = data_ptr(H_f, y, x);
float * data_H_b = data_ptr(H_b, y, x);
const float * data_prev_f = CudaNdarray_DEV_DATA(prev_f);
const float * data_prev_b = CudaNdarray_DEV_DATA(prev_b);
const float * data_old_state_f = x > 0 ? data_ptr(H_f, y, x - 1) + 3 * n_cells : data_prev_f;
const float * data_old_state_b = x > 0 ? data_ptr(H_b, y, x - 1) + 3 * n_cells : data_prev_b;
float * data_out_f = data_ptr(out_f, y, x);
float * data_out_b = data_ptr(out_b, y, x);
const float * data_i_f = CudaNdarray_DEV_DATA(i_f) + x * n_batch;
const float * data_i_b = CudaNdarray_DEV_DATA(i_b) + x * n_batch;
//TODO tune launch configuration
blstm_kernel<<<DIM_GRID, DIM_BLOCK>>>(data_H_f, data_H_b, data_old_state_f, data_old_state_b, x > 0,
data_out_f, data_out_b, state_out_f, state_out_b,
n_cells, n_batch, data_i_f, data_i_b);
}
//epsilon are the derivates w.r.t. Z, delta stores the gate and cell activations and will store the derivatives later
//Dd stores the derivative w.r.t. end state
void do_blstm_bwd(CudaNdarray * delta_f, CudaNdarray * delta_b, CudaNdarray * epsilon_f, CudaNdarray * epsilon_b,
const CudaNdarray * Y_f, const CudaNdarray * Y_b, const CudaNdarray * Dd_f, const CudaNdarray * Dd_b,
const CudaNdarray * c_f, const CudaNdarray * c_b, int y, int x, bool rightBorder, const CudaNdarray * i_f, const CudaNdarray * i_b)
{
assert(y == 0 && "2d LSTM not supported yet");
int dims[2];
lastTwoDims(delta_f, dims);
assert(dims[1] % 4 == 0); //3 gates + cell
int n_cells = dims[1] / 4;
int n_batch = dims[0];
float * data_delta_f = data_ptr(delta_f, y, x);
float * data_delta_b = data_ptr(delta_b, y, x);
float * data_epsilon_f = data_ptr(epsilon_f, y, x);
float * data_epsilon_b = data_ptr(epsilon_b, y, x);
const float * data_next_epsilon_f = rightBorder ? CudaNdarray_DEV_DATA(Dd_f) : data_ptr(epsilon_f, y, x + 1);
const float * data_next_epsilon_b = rightBorder ? CudaNdarray_DEV_DATA(Dd_b) : data_ptr(epsilon_b, y, x + 1);
const float * data_old_state_f = x > 0 ? data_ptr(delta_f, y, x - 1) + 3 * n_cells : CudaNdarray_DEV_DATA(c_f);
const float * data_old_state_b = x > 0 ? data_ptr(delta_b, y, x - 1) + 3 * n_cells : CudaNdarray_DEV_DATA(c_b);
const float * data_Y_f = data_ptr(Y_f, y, x);
const float * data_Y_b = data_ptr(Y_b, y, x);
const float * data_i_f = CudaNdarray_DEV_DATA(i_f) + x * n_batch;
const float * data_i_b = CudaNdarray_DEV_DATA(i_b) + x * n_batch;
//TODO tune launch configuration
blstm_bwd_kernel<<<DIM_GRID, DIM_BLOCK>>>(data_delta_f, data_delta_b, data_epsilon_f, data_epsilon_b, data_next_epsilon_f, data_next_epsilon_b,
data_old_state_f, data_old_state_b, x > 0, data_Y_f, data_Y_b, n_cells, n_batch, data_i_f, data_i_b);
}
void mul_with_tanh_deriv(CudaNdarray * dst, const CudaNdarray * tanhVals, int y, int x)
{
float * data_dst = data_ptr(dst, y, x);
const float * data_tanhVals = data_ptr(tanhVals, y, x);
int size = lastTwoDimsStride(dst);
//TODO tune launch configuration
mul_with_tanh_deriv_kernel<<<DIM_GRID, DIM_BLOCK>>>(data_dst, data_tanhVals, size);
}
__global__ void repvec(const float * v, int vlen, int nCopies, float * dest)
{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
while (idx < vlen * nCopies)
{
dest[idx] = v[idx % vlen];
idx += gridDim.x * blockDim.x;
}
}
void fillmat(const CudaNdarray * b, CudaNdarray * dst)
{
const float * data_b = CudaNdarray_DEV_DATA(b);
float * data_dst = CudaNdarray_DEV_DATA(dst);
const int * dims_b = CudaNdarray_HOST_DIMS(b);
int dims_dst[2];
lastTwoDims(dst, dims_dst);
assert(dims_b[0] == dims_dst[1]);
//TODO tune launch configuration
repvec<<<DIM_GRID, DIM_BLOCK>>>(data_b, dims_dst[1], CudaNdarray_SIZE(dst)/dims_dst[1], data_dst);
}
//C[y,x] += A[y,x]*B[y,x]
//(if not 4-dimensional, then indexing [y,x] is ignored (e.g. for weight matrices))
void affine_y_x(int y_A, int x_A, const CudaNdarray * A, int y_B, int x_B, const CudaNdarray * B,
int y_C, int x_C, CudaNdarray * C, bool transpose_A=false, bool transpose_B=false)
{
const float * data_A = data_ptr(A, y_A, x_A);
const float * data_B = data_ptr(B, y_B, x_B);
float * data_C = data_ptr(C, y_C, x_C);
int A_dim[2], B_dim[2];
lastTwoDims(A, A_dim);
lastTwoDims(B, B_dim);
int ldB = B_dim[1];
int ldA = A_dim[1];
cublasOperation_t transA = transpose_A ? CUBLAS_OP_T : CUBLAS_OP_N;
cublasOperation_t transB = transpose_B ? CUBLAS_OP_T : CUBLAS_OP_N;
if (transpose_A)
{
std::swap(A_dim[0], A_dim[1]);
}
if (transpose_B)
{
std::swap(B_dim[0], B_dim[1]);
}
const float alpha = 1;
const float beta = 1;
HANDLE_ERROR(cublasSgemm(handle, transB, transA, B_dim[1], A_dim[0], A_dim[1], &alpha, data_B, ldB,
data_A, ldA, &beta, data_C, B_dim[1]));
}
//offset is used for x time-shift between A and B
//if offset == 1, then we will calculate A[0..end-1] * B[1..end]
void affine_global(const CudaNdarray * A, const CudaNdarray * B, CudaNdarray * C,
bool transpose_A=false, bool transpose_B=false, int offset = 0, float beta = 1.0)
{
float * data_C = CudaNdarray_DEV_DATA(C);
int A_dim[2], B_dim[2];
lastTwoDims(A, A_dim);
lastTwoDims(B, B_dim);
int shiftA = A_dim[1] * A_dim[0];
int shiftB = B_dim[1] * B_dim[0];
A_dim[0] = CudaNdarray_SIZE(A) / A_dim[1] - offset * A_dim[0];
B_dim[0] = CudaNdarray_SIZE(B) / B_dim[1] - offset * A_dim[0];
const float * data_A = CudaNdarray_DEV_DATA(A);
const float * data_B = CudaNdarray_DEV_DATA(B) + offset * shiftB;
int ldB = B_dim[1];
int ldA = A_dim[1];
cublasOperation_t transA = transpose_A ? CUBLAS_OP_T : CUBLAS_OP_N;
cublasOperation_t transB = transpose_B ? CUBLAS_OP_T : CUBLAS_OP_N;
if (transpose_A)
{
std::swap(A_dim[0], A_dim[1]);
}
if (transpose_B)
{
std::swap(B_dim[0], B_dim[1]);
}
const float alpha = 1;
HANDLE_ERROR(cublasSgemm(handle, transB, transA, B_dim[1], A_dim[0], A_dim[1], &alpha, data_B, ldB,
data_A, ldA, &beta, data_C, B_dim[1]));
}