We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
用文中给定的预训练模型SpeechGPT-7B-ma,判断一句话是否说完,用的Train SpeechGPT中提供的token,去掉最后的送到模型进行推理,但是输出的结果是一些token但不是表示结束的token""。代码如下: import torch import transformers from transformers import AutoConfig, LlamaForCausalLM, LlamaTokenizer, GenerationConfig
device = "cuda"
model_dir = "SpeechGPT/speechgpt/7B-ma" model = LlamaForCausalLM.from_pretrained( model_dir, load_in_8bit=False, torch_dtype=torch.float16, device_map="auto", ) model.half() model.eval() if torch.version >= "2" and sys.platform != "win32": model = torch.compile(model)
tokenizer = LlamaTokenizer.from_pretrained(model_dir) tokenizer.pad_token_id = (0) tokenizer.padding_side = "left"
#去掉最后的结束标志 audio_tokens ="<189><247><922><991><821><258><485><974><284><466><969><523><196><202><881><331><822><853><432><32><742><98><519><26><204><280><576><384><879><901><555><944><366><641><124><362><734><156><824><462><761><907><430><81><597><716><205><521><470><821><677><355><483><641><124><243><290><978><82><620><915><470><821><576><384><466><398><212><455><931><579><969><778><45><914><445><469><576><803><6><803><791><377><506><835><67><940><613><417><755><237><224><452><121><736>"#“”
model_inputs = tokenizer([audio_tokens], return_tensors="pt").to(device) print("model_inputs.input_ids:", model_inputs.input_ids) print("len(model_inputs.input_ids):",len(model_inputs.input_ids)) print("len(model_inputs.input_ids[0]):",len(model_inputs.input_ids[0]))
generation_config = GenerationConfig( temperature=0.7, top_p=0.8, top_k=50, do_sample=True, max_new_tokens=20, min_new_tokens=10, )
generated_ids = model.generate( input_ids=model_inputs.input_ids, generation_config=generation_config, #return_dict_in_generate=True, output_scores=True, max_new_tokens=10, )
generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print("response:", response) 输出结果: 理论上模型response回复的第一个token应该是音频的结束符啊,请教原因~
The text was updated successfully, but these errors were encountered:
No branches or pull requests
用文中给定的预训练模型SpeechGPT-7B-ma,判断一句话是否说完,用的Train SpeechGPT中提供的token,去掉最后的送到模型进行推理,但是输出的结果是一些token但不是表示结束的token""。代码如下:
import torch
import transformers
from transformers import AutoConfig, LlamaForCausalLM, LlamaTokenizer, GenerationConfig
device = "cuda"
model_dir = "SpeechGPT/speechgpt/7B-ma"
model = LlamaForCausalLM.from_pretrained(
model_dir,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto",
)
model.half()
model.eval()
if torch.version >= "2" and sys.platform != "win32":
model = torch.compile(model)
tokenizer = LlamaTokenizer.from_pretrained(model_dir)
tokenizer.pad_token_id = (0)
tokenizer.padding_side = "left"
#去掉最后的结束标志
audio_tokens ="<189><247><922><991><821><258><485><974><284><466><969><523><196><202><881><331><822><853><432><32><742><98><519><26><204><280><576><384><879><901><555><944><366><641><124><362><734><156><824><462><761><907><430><81><597><716><205><521><470><821><677><355><483><641><124><243><290><978><82><620><915><470><821><576><384><466><398><212><455><931><579><969><778><45><914><445><469><576><803><6><803><791><377><506><835><67><940><613><417><755><237><224><452><121><736>"#“”
model_inputs = tokenizer([audio_tokens], return_tensors="pt").to(device)
print("model_inputs.input_ids:", model_inputs.input_ids)
print("len(model_inputs.input_ids):",len(model_inputs.input_ids))
print("len(model_inputs.input_ids[0]):",len(model_inputs.input_ids[0]))
generation_config = GenerationConfig(
temperature=0.7,
top_p=0.8,
top_k=50,
do_sample=True,
max_new_tokens=20,
min_new_tokens=10,
)
generated_ids = model.generate(
input_ids=model_inputs.input_ids,
generation_config=generation_config,
#return_dict_in_generate=True,
output_scores=True,
max_new_tokens=10,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

print("response:", response)
输出结果:
理论上模型response回复的第一个token应该是音频的结束符啊,请教原因~
The text was updated successfully, but these errors were encountered: